

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changelog

Breaking changes are prefixed with a “[BREAKING]” label.

master (unreleased)

Added

	[server] mistryd --help now displays the available filesystem adapters [628ff12 [https://github.com/skroutz/mistry/commit/628ff120062599ddb5bb0f2d41cc4d2ae47890ab]]

Changed

	[server] Removed debug logs coming from the web view [28e9743 [https://github.com/skroutz/mistry/commit/28e97433293fdddbf62089c1514bb15c7efbd829]]

Fixed

	[server] We would erroneously consider failed builds as successful, which resulted in some builds starting with cold caches instead of being incremental [ab5ba18 [https://github.com/skroutz/mistry/commit/ab5ba18b59ffd579834abd69e83c756263e4c858]]

	[client] The client now accepts dynamic arguments in the form of --foo bar (in addition to --foo=bar). Previously, it would panic [f209061 [https://github.com/skroutz/mistry/commit/f209061cd16274e4a198ec7d3c8be05718874b93]]

	[client] If the path passed to --target did not exist, it was erroneously created as a file [1bfdeb4 [https://github.com/skroutz/mistry/commit/1bfdeb4fccab06910be760d90d8bdef246fb4a3f]]

	[server] Preserve directory structure inside the Docker images built by the server [#125 [https://github.com/skroutz/mistry/pull/125]]

0.1.0 (2018-10-01)

Added

	Support for opaque parameters [#97 [https://github.com/skroutz/mistry/pull/97]]

	server: Version flag --version/-v [5c20927 [https://github.com/skroutz/mistry/commit/5c209278bd6bf1032a1958eb252098b9e1ae228a]]

Fixed

	server: Synchronize filesystem operations when symlinking [502a42b [https://github.com/skroutz/mistry/commit/502a42b]]

	server: Errors on the build bootstrap phase would not abort the build [828eddc [https://github.com/skroutz/mistry/commit/828eddc]]

	server: Socket FDs to docker were never closed [b079128]

	webview: improve render performance [#76 [https://github.com/skroutz/mistry/issues/76]]

Changed

	server: build info contains information about build errors [7a3427 [https://github.com/skroutz/mistry/commit/7a3427]]

	server: build info contains information about build cache usage [93fd733 [https://github.com/skroutz/mistry/commit/93fd733]]

	server: build info contains information about group [5ff4cb1 [https://github.com/skroutz/mistry/commit/5ff4cb1]]

	server: build info contains information about build time [65b3ef2 [https://github.com/skroutz/mistry/commit/65b3ef2]]

0.0.2 (2018-05-15)

Added

	client: Output container stderr on non-zero exit code [#85 [https://github.com/skroutz/mistry/pull/85]]

	client: Add a --timeout option to specify maximum time to wait for a job [#81 [https://github.com/skroutz/mistry/pull/70]]

	server: Introduced a configuration option to limit the number of concurrent builds [73c44ec [https://github.com/skroutz/mistry/commit/73c44ecc924260ccf61bad220eb26cd51a1f30d6]]

	server: Add --rebuild option to rebuild the docker images of a selection of projects ignoring the image cache [#70 [https://github.com/skroutz/mistry/pull/70]]

	client: Add --rebuild option to rebuild the docker image ignoring the image cache [#70 [https://github.com/skroutz/mistry/pull/70]]

	client: Add --clear-target option to clear target path before fetching
artifacts [#63 [https://github.com/skroutz/mistry/pull/63]]

	client: Build logs are now displayed when in verbose mode [#65 [https://github.com/skroutz/mistry/pull/65]]

	Asynchronous job scheduling [#61 [https://github.com/skroutz/mistry/pull/61]]

	Web view [#17 [https://github.com/skroutz/mistry/pull/17]]

Changed

	[BREAKING] server: failed image builds are now always visible as ready [#75 [https://github.com/skroutz/mistry/issues/75]]

	server: Job parameters are not logged, making the logs less verbose

	[BREAKING] Failed build results are no longer cached [#62 [https://github.com/skroutz/mistry/pull/62]]

	[BREAKING] client/server: Client and server binaries are renamed to “mistryd” and “mistry” respectively.
Also project is now go-gettable. [abbfb58 [https://github.com/skroutz/mistry/commit/abbfb58d5a2aaf3eaebf9408d81ec7d459326416]]

	client: default host is now 0.0.0.0

Fixed

	Don’t delete build results on docker image build failure [#75 [https://github.com/skroutz/mistry/issues/75]]

	If a container with the same name exists, we remove it so that the new container
can run [#20 [https://github.com/skroutz/mistry/issues/20]]

	Streaming log output in web view might occassionally hang [7c07ca1]

0.0.1 (2018-04-12)

First release!

 [image: _images/logo.png]mistry logo

[image: _images/mistry.svg]Build Status [https://travis-ci.org/skroutz/mistry]
[image: _images/mistry1.svg]Go report [https://goreportcard.com/report/github.com/skroutz/mistry]
[image: _images/License-GPL%20v3-blue.svg]License: GPL v3 [https://www.gnu.org/licenses/gpl-3.0]

mistry is a general-purpose build server that enables fast workflows by
employing artifact caching and incremental building techniques.

mistry executes user-defined build steps inside isolated environments
and saves build artifacts for later consumption.

Refer to the introductory blog post Speeding Up Our Build Pipelines [https://engineering.skroutz.gr/blog/speeding-up-build-pipelines-with-mistry/]
for more information.

At Skroutz we use mistry to speed our development and deployment
processes:

	Rails asset compilation (rails assets:precompile)

	Bundler dependency resolution and download (bundle install)

	Yarn dependency resolution and download (yarn install)

In the above use cases, mistry executes these commands once they are needed for
the first time and caches the results. Then, when anyone else executes the same
commands (i.e. application servers, developer workstations, CI server etc.)
they instantly get the results back.

Features

	execute user-defined build steps in pre-defined environments, provided as Docker images

	build artifact caching

	incremental building (see “Build cache” [https://github.com/skroutz/mistry/wiki/Build-cache])

	CLI client for interacting with the server (scheduling jobs etc.)
via a JSON API

	a web view for inspecting the progress of builds (see “Web view”)

	efficient use of disk space due to copy-on-write semantics (using Btrfs snapshotting [https://en.wikipedia.org/wiki/Btrfs#Subvolumes_and_snapshots])

For more information visit the wiki [https://github.com/skroutz/mistry/wiki].

Getting started

You can get the binaries from the
latest releases [https://github.com/skroutz/mistry/releases].

Alternatively, if you have Go 1.10 or later you can get the
latest development version.

NOTE: statik [https://github.com/rakyll/statik] is a build-time dependency,
so it should be installed in your system and present in your PATH.

$ go get github.com/rakyll/statik

server
$ go get -u github.com/skroutz/mistry/cmd/mistryd

client
$ go get -u github.com/skroutz/mistry/cmd/mistry

Usage

To boot the server a configuration file is needed:

$ mistryd --config config.json

You can use the sample config as a starting
point.

Use mistryd --help for more info.

Adding projects

Projects are essentially directories with at minimum a Dockerfile at their
root. Each project directory should be placed in the path denoted by
projects_path (see Configuration.

Refer to File system layout - Projects directory [https://github.com/skroutz/mistry/wiki/File-system-layout#projects-directory]
for more info.

API

Interacting with mistry (scheduling builds etc.) can be done in two ways:
(1) using the client and (2)
using the HTTP API directly (see below).

We recommended using the client whenever possible.

Client

Schedule a build for project foo and download the artifacts:

$ mistry build --project foo --target /tmp/foo

The above command will block until the build is complete and then download the
resulting artifacts to /tmp/foo/.

Schedule a build without fetching the artifacts:

$ mistry build --project foo --no-wait

The above will just schedule the build and return immediately - it will not
wait for it to complete and will not fetch the artifacts.

For more info refer to the client’s README.

HTTP Endpoints

Schedule a new build without fetching artifacts (this is equivalent to passing
--no-wait when using the client):

$ curl -X POST /jobs \
 -H 'Accept: application/json' \
 -H 'Content-Type: application/json' \
 -d '{"project": "foo"}'
{
 "Params": {"foo": "xzv"},
 "Path": "<artifact path>",
 "Cached": true,
 "Coalesced": false,
 "ExitCode": 0,
 "Err": null,
 "TransportMethod": "rsync"
}

Web view

mistry comes with a web view where progress and logs of each build can be
inspected.

Browse to http://0.0.0.0:8462 (or whatever address the server listens to).

Configuration

Configuration is provided in JSON format. The following settings are currently
supported:

Setting	Description	Default
————-	:————-:	—–:
projects_path (string)	The path where project folders are located	“”
build_path (string)	The root path where artifacts will be placed	“”
mounts (object{string:string})	The paths from the host machine that should be mounted inside the execution containers	{}
job_concurrency (int)	Maximum number of builds that may run in parallel	(logical-cpu-count)
job_backlog (int)	Used for back-pressure - maximum number of outstanding build requests. If exceeded subsequent build requests will fail	(job_concurrency * 2)

The paths denoted by projects_path and build_path should be
present and writable by the user running the server.

For an example refer to the sample config.

Development

Before anything, make sure you install the dependencies:

make deps

The tests will attempt to ssh to localhost. You will need to add your
public key to the authorized keys as if you were setting this up to a remote
host.

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

To run the tests, the Docker daemon [https://docs.docker.com/install/] should
be running and SSH access to localhost should be configured.

$ make test

Note: the command above may take more time the first time it’s run,
since some Docker images will have to be fetched from the internet.

License

mistry is released under the GNU General Public License version 3. See COPYING.

mistry logo contributed by @cyfugr

mistry client

mistry is a CLI for interacting with the mistry server, mistryd via its
HTTP API. It can schedule builds and download the resulting build artifacts.

It supports blocking and non-blocking operation mode.

For usage examples and information use mistry build -h.

Development

Before anything, make sure you install the dependencies:

make deps

To build the client, execute the following from the repository root:

$ make mistry

Likewise, to run the tests:

$ make test-cli

License

mistry is released under the GNU General Public License version 3. See COPYING.

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_images/logo.png
~ mistry

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

